Determining the Oxidation Number

Rules to remember...

3. The oxidation number of hydrogen is +1 in most of its compounds. Exception: In hydrides, the oxidation number of hydrogen is -1 , as in CaH_{2}.
4. The oxidation number of oxygen in compounds is usually -2.
The oxidation number of most Group 16 elements is -2 .

Oxidation \# can be written as -2 or 2 .

Rules to remember...

5. The oxidation number of a Group 1 element in a compound is +1 . Group 2-

Alkali Earth
Metals
6. The oxidation number of a Group 2 element in a compound is +2.
7. The oxidation number of a Group 17 element in a compound is $\mathbf{- 1}$, except when that element is combined with one having a higher electronegativity. It is $\mathbf{- 1}$ when it is bonded to a metal.

Rules to remember...

8. The sum of the oxidation numbers of all of the atoms in a neutral compound is zero.
Positives = Negatives, for example $(+2)+(-2)=0$
9. The sum of the oxidation numbers in a polyatomic ion is equal to the charge of the ion.
More
than 1
than 1
element
For example, the sum of the oxidation numbers for $\mathrm{SO}_{4}{ }^{2-}$ is -2 .

The entire ion

Example 1...

Determine the oxidation number of carbon in $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.

- Na is +1 (Group 1)...but there are two of them so... $(+1)(2)=+2$
Rule $<$ - O is -2 (Group 16)...but there are four of them \#4 so...(-2)(4) =-8
- Do the math... add +2 and -8

$$
400 \quad(+2)+(-8)=-6
$$

- Refer to rule \#8...the sum of the oxidation

$$
\begin{aligned}
& \begin{array}{l}
\text { Remember } \\
\text { positives }= \\
\text { negatives }
\end{array}
\end{aligned}<\begin{aligned}
& \text { numbers of all atoms in a neutral compound } \\
& \text { is zero...so }(-6)+?=0
\end{aligned}
$$

The oxidation number of $S=+6$

Example 2...

Determine the oxidation number of the metal in $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Rule - O is -2 (Group 16)...but there are three of them
\#4 so...(-2)(3) $=-6$

- Refer to rule \#3...the sum of the oxidation numbers of al atoms in a neutral compound is zero...so (-6) + ? = 0
?= +6 BUT there are two atoms of Fe, so...
Divide
by 2 $(+6) / 2=+3$
The oxidation number of Fe is +3 . Remember to

Example 3...

Determine the oxidation number $\mathrm{PO}_{4}^{3 \text { is not }}$ of phosphorus in PO_{4}^{-3}.

Rule
\#4

- O is -2 (Group 16)...but there are four of them so...(-2)(4) =-8
- Do the math.
$(?)+(-8)=-3$
400 The oxidation number of $\mathrm{P}=+5$

$$
\begin{array}{r}
+9 \\
+-8 \\
\hline=-3
\end{array}
$$

Practice... Determine the oxidation numbers of the identified ion in each of the following.

1) MnO_{2}
 $?+(-4)=0$
$+4$
2) $\mathrm{Cu}_{2} \mathrm{O}$ $\mathrm{Cu}_{2} \mathrm{O}$
$?+(-2)=0$
$+2 \ldots$ BUT there are 2 atoms so divide +2 by 2 $+1$
3) $\mathrm{K}_{2} \mathrm{SO}_{4} \underset{(+1)(2)}{\mathrm{K}_{2} \mathrm{~S}_{2}}$

$$
(+1)(2)+?+(-2)(4)=0
$$

$$
(+2)+?+(-8)=0
$$

$$
+6
$$

4) $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \underset{(+1)(2)}{\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{2}}$
$(+1)(2)+?+(-2)(4)=0$
$(+2)+?+(-8)=0$
$+6 \ldots$ BUT there are 2 atoms so divide +6 by 2
5) NaBH_{4}

$$
\begin{aligned}
& +3 \\
& \mathrm{Na} \mathrm{~B} \quad \mathrm{H}_{4} \\
& (+1)+?+(-1)(4)=0 \\
& (+1)+?+(-4)=0 \\
& +3
\end{aligned}
$$

Homework Tonight...

