Honors PS Chemistry

Chapter 13/14 Review...Please study for the test.

Modified True/False: Indicate whether the sentence or statement is true or false. <u>If false</u>, change the identified word or phrase to make the sentence or statement true.

- 1. _____Temperature is the measure of the average kinetic energy of a substance.
- 2. _____When a gas condenses to a liquid it absorbs heat from its surroundings.
- 3. _____To calculate the density of a fluid, you must divide its volume by its mass.
- 4. _____A(n) liquid does not have a definite shape, but it does have a definite volume.
- 5. ____Particles in a liquid move around just as freely as particles in a solid.
- 6. _____The change in state from a gas to a liquid is called evaporation.
- 7. _____Vaporization is when a solid changes into a gas without becoming a liquid first.
- 8. _____When a substance cools it loses energy to its surroundings.
- 9. _____ Heating a fluid increases the viscosity of that fluid.
- 10. _____ The temperature of a substance increases when the kinetic energy of the substance increases.

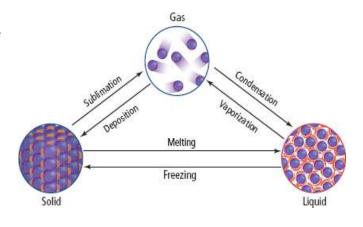
Multiple Choice :

- 11. _____Which of the following best describes particles in a solid?
 - A) particles tightly packed together
 - B) no attractive forces between particles
 - C) molecules slide past each other; sample takes shape of container
 - D) fills whatever container it is in
- 12. ____What does the constant bombardment of gas molecules against the inside walls of a container produce? A) temperature B) pressure C) density D) diffusion
- 13. _____Why does a can collapse when a vacuum pump removes air from the can?
 - A) The inside and outside forces balance out and crush the can
 - B) The unbalanced outside force from atmospheric pressure crushes the can.
 - C) The atmosphere exerts pressure on the inside of the can and crushes it.
 - D) The vacuum pump creates a force that crushes the can.
- 14. ____Why does the air pressure inside the tires of a car increase when the car is driven?A) Some of the air has leaked out.
 - B) The air particles collide with the tire after the car is in motion.
 - C) The air particles inside the tire increase their speed because their temperature rises.
 - D) The atmosphere compresses the tire.
- 15. _____When the temperature of a substance is lowered, its particles ____
 - A) vibrate more slowly B) escape quickly the attractive forces of the other particles
 - C) vibrate more D) stop vibrating completely

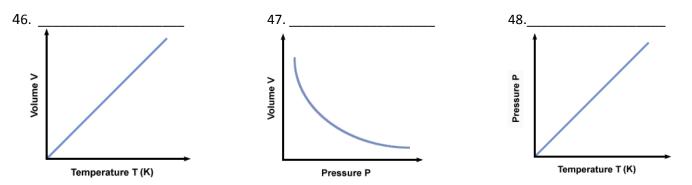
Test Date:_____

16.	What happens to the volume of a gas during compression?
	A) The volume increases. B) The volume decreases.
	C) The volume remains constant. D) It is impossible to tell because all gases are different.
17.	Compared with the particles in a gas, the particles in a liquid
	A) have more energy. B) move around less. C) are larger. D) are farther apart.
18.	Particles within a solid
	A) do not move. B) vibrate energetically.
	C) vibrate weakly about fixed positions. D) exchange positions easily.
19.	Compared with the particles in a liquid, the particles in a solid usually are
	A) higher in energy.B) more massive.C) closer together.D) more fluid.
20.	Solids have a definite volume because
	A) the particles do not have a tendency to change positions.
	B) the particles are far apart.
	C) they can be easily compressed.
	D) the energy of the particles is high.
21.	Which of the following properties do solids share with liquids?
	A) fluidity B) definite volume C) definite shape D) slow rate of diffusion
22.	Bernoulli's principle states that as the velocity of a fluid, the pressure exerted by the fluid
	A) increases, increases B) increases, decreases
23.	Boyle's Law relates what two variables?
	A) Volume and pressure B) Volume and temperature
	C) Temperature and pressure D) Pressure and moles of gas
24.	Increasing temperature
	A) increases viscosity. B) decreases viscosity. C) does not affect viscosity. D) eliminates viscosity.
25.	Which of the following equations correctly relates the two variables?
	A) P1/V1= P2/V2 B) V1/T1= V2/T2 C) (P1)(T1)= (P2)(T2) D) (P1)(n1)= (P2)(n2)
26.	According to the kinetic-molecular theory, particles of matter
	A) are in constant motion. B) have different colors. C) have different shapes. D) are always fluid.
Sho	ort Answer:
27.	Boyle's Law relates which two variables? a. Is this relationship direct or an inverse relationship?
	b. Which variable is assumed to be constant?
28.	Charles' Law relates which two variables? a. Is this relationship direct or an inverse relationship?
	b. Which two variables are assumed to be constant?
29.	Gay Lussac's Law relates which two variables? a. Is this relationship direct or an inverse relationship?
	b. Which two variables are assumed to be constant?

- 30. The Combined Gas Law relates which variables?
- 31. What is standard temperature and pressure (STP)?
- 32. What units must be used to express the temperature in the equation for the ideal gas law?
- 33. In what <u>directions</u> must energy be added to cause the indicated phase changes? (*Hint: Add arrows to show how energy must be added in order for each of the phase changes to take place.*)



- 35. Describe thermal expansion. Which gas law is related to the concept of thermal expansion?
- 36. What does Archimedes' principle state?
- 37. Why does the air pressure inside the tire of a car increase when the car is driven?
- 38. The dots in the containers represent particles of air. Use what you know about pressure, temperature, volume, and the kinetic theory of matter to write a hypothesis to explain what is happening in the containers.


Completion: Each of the following examples gives a change in volume, temperature, amount, or pressure of a gas sample. Indicate whether the other variable mentioned would increase or decrease. $\uparrow =$ increases $\downarrow =$ decreases 39. Additional gas is added to a soccer ball. The pressure ___.

- 40. An inflated balloon is placed in a refrigerator. The volume ___.
- 41. A piston in an engine compresses the gas into a smaller volume. The pressure ____
- 42. Compressed air in scuba tanks cools off as a diver swims at deeper levels. The pressure in the tanks___.
- 43. A person sits on an air mattress. The pressure ___.
- 44. An unopened bag of potato chips is left in a hot car. The volume___.
- 45. Dry ice (solid CO₂) is sealed in a plastic bag. As the temperature increases, the amount of gas present in the bag ____.

Graph Analysis:

Each of the three graphs represents one of the gas laws. Label each graph accordingly.

Practice Problems:

- 49. A 100 cm³ object weighing 0.49 N (50 g) is placed in water. What is the buoyant force of the water (1 cm³ of water weighs 0.0098 N) on the object? Will the object sink or float?
- 53. A sample of gas occupies a volume of 2.00 liters at a temperature of 100 K. What volume will the gas occupy at 300 K assuming the pressure remains constant?
- 50. A hydraulic lift is used to lift a heavy machine that is pushing down on a 3.2 m2 piston A1 with a force F1 of 1200 N. What force F2 needs to be exerted on a 0.0068 m2 piston A2 to lift the machine?
- 54. The air in a dry, sealed 2 L soda bottle has a pressure of 0.998 atm at sea level at a temperature of 34.0°C. What will be its pressure if it is brought to a higher altitude where the temperature is only 23.0°C?
- 51. A hydraulic lift is used to lift a heavy machine that is pushing down on a 6.8 m2 piston A1 with a force F1 of 900 N. What force F2 needs to be exerted on a 0.0075 m2 piston A2 to lift the machine?
- 52. A balloon has a volume of 8.0 L at a pressure of 101 kPa. What will be the new volume when the pressure drops to 43.0 kPa?
- 55. If a gas sample has a pressure of 30.7 kPa at 0.00°C, by how much does the temperature have to decrease to lower the pressure to 28.4 kPa?

56. An object weighs 25 Newtons. When submerged in a fluid it displaces 20 N of water. What is the buoyant force pushing up on this object? Will the object sink or float? Explain