\qquad Period \qquad

Pascal's Principle

Directions to practice problems: To receive credit you must show your work, round to the hundredths and label your answer with the correct unit.

1. According to Pascal, pressure applied to a fluid \qquad
2. To calculate pressure, what two variables do you need to know? \qquad and \qquad
3. What is the SI unit for pressure? \qquad
4. Explain the followin8 usin 8 Pascal's Principle:

$J_{\text {squeezing }}$ a tube of tooth paste.
$\sqrt{ }$ a hypodermic needle
5. The lift cylinder is $25 \mathrm{~cm}^{2}$ and the small cylinder is $1.25 \mathrm{~cm}^{2}$. How much force would need to be applied to lift a 6000 N car?
6. A hydraulic lift is used to lift a heavy machine that is pushing down on a $5.5 \mathrm{~m}^{2}$ piston A_{1} with a force F_{1} of 750 N . What force F_{2} needs to be exerted on a $0.0072 \mathrm{~m}^{2}$ piston A_{2} to lift the machine?
7. Water is sandwiched between the pistons. The areas of the 2 pistons are shown in the diagram below. Say you apply a force of 100 N on the small piston. What pressure does this piston produce on the enclosed water?

8. The small and large pistons of a hydraulic press have areas of $2 \mathrm{~cm}^{2}$ and $4 \mathrm{~cm}^{2}$. If the load on the large piston in 3200 N , what is the input force (effort) that must be applied on the small piston?
9. A hydraulic car lift has a pump piston with area $\mathrm{A}_{1}=0.0120 \mathrm{~m}^{2}$. The resultant piston has an area of $\mathrm{A}_{2}=0.150 \mathrm{~m}^{2}$. The total weight of the car and plunger is $\mathrm{F}_{2}=2500 \mathrm{~N}$. If the bottom ends of the piston and plunger are at the same height, what input force is reguired to stabilize the car and output plunger?

10. A hydraulic lift is used to lift a heavy machine that is pushing down on a $3.2 \mathrm{~m}^{2}$ piston A_{1} with a force F_{1} of 1200 N . What force F_{2} needs to be exerted on a $0.0068 \mathrm{~m}^{2}$ piston A_{2} to lift the machine?
11. A hydraulic lift is used to lift a heavy machine that is pushing down on a $3.5 \mathrm{~m}^{2}$ piston A_{1} with a force F_{1} of 1000 N . What force F_{2} needs to be exerted on a $0.0554 \mathrm{~m}^{2}$ piston A_{2} to lift the machine?
12. In chansin8 a tire, a hydraulic jack lifts 7468 Non its large piston, which has an area of $28.27 \mathrm{~cm}^{2}$. How much force must be exerted on the small piston if it has an area of $1.325 \mathrm{~cm}^{2}$?
12.A dentist's chair makes use of Pascal's principle to move patients up and down. Together, the chair and a patient exert a downward force of 2269 N . The chair is attached to a large piston with an area of 1221 cm^{2}. To move the chair, a pump applies force to a small piston with an area of $88.12 \mathrm{~cm}^{2}$ What force must be exerted on the small piston to lift the chair?
13. A student in the lunchroom blows into his straw with a force of 0.26 N . The column of air pushing the liguid in the 8 lass has an area of $0.21 \mathrm{~cm}^{2}$. If the liguid in the slass pushes upward with a force of 79 N , what is the area of the liguid at the surface of the 8 lass?
14. A hydraulic lift office chair has its seat attached to a piston with an area of $11.2 \mathrm{~cm}^{2}$. The chair is raised by exertin δ force on another piston, with an area of $4.12 \mathrm{~cm}^{2}$. If a person sittin8 on the chair exerts a downward force of 219 N , what force needs to be exerted on the small piston to lift the seat?
15. In a hydraulic car lift, compressed air exerts a force on a piston with an area of $5 \mathrm{~cm}^{2}$ that is transmitted to a second piston with an area of $100 \mathrm{~cm}^{2}$. How much of an applied force must be exerted on the small piston to lift a car that weighs 15567 N? What pressure produces this force?
16. A bicycle pump uses Pascal's law to operate. The air in the hose acts as a fluid and transfers force and pressure from the piston to the tire. If a pump has a piston with an area of $7.1 \mathrm{~cm}^{2}$, how much force must be exerted on it to create a pressure of $8.2 \times 10^{5} \mathrm{~Pa}$?
