K - PS Physics: Chapter 5 Review Questions Test Date: _ a. force acting over a distance to move an object ### Unscramble the following vocabulary words and match each word with the correct definition. j 1. Luylpe Pulley b. an instrument that makes work easier m 2. rylee lever 3. twta watt c. force applie c. force applied to machine d. force that opposes the effort force i 4. maiclehnca dytaangea MA e. amount of work done per unit time e 5. Oprwe Power f. 1 newton-meter h 6. Cfurmlu fulcrum g. simple machine with a sloped surface g 7. cilendin nelpa inclined plane h. the fixed point on a lever k 8. Gwdee wedge k. simple machine made up of two inclined planes i. number of times a machine multiplies the effort force o 9. leewh adn xlae wheel and axle j. rope wrapped around a grooved wheel n 10. Cwsre screw I. 1 joule per second b 11. Chinmae machine m. straight bar that moves about a fixed point a12. Krow work n. inclined plane wrapped to make a spiral f 13. Leuoj joule o. simple machine made up of two circular objects c 14. feftro crofe effort force d 15. siscnatree fcore resistance force ## For the questions 16-30 decide which simple machine(s) that best fits the clue. Simple machine types can (and will) be used more than once. Lever 16. Two simple machines found in a pair of scissors wedge inclined plane 17. A screw is actually one of these wrapped around a post pulley 18. This simple machine makes raising a flag up a flagpole much easier **inclined Plane** 19. A ramp is an example of this type of simple machine wheel and axle20. This simple machine rolls and is found on cars, bikes and wheelbarrows. 21. A rope, a wheel with a groove in it and a weight make up this simple machine. Lever 22. This simple machine has a fulcrum, or pivot point, which can be located in the center, near the end or at the end. 23. This simple machine can be used to split things apart or hold a door open. Screw 24. This simple machine secures things together and is made up of an inclined plane wrapped around a cylinder. inclined plane 25. A heavy object could be rolled up this machine, instead of lifting it straight up. wedge 26. A knife is an example of this type of simple machine. **SCrew** 27. The bottom of a light bulb would be considered this type of simple machine wedge 28. This machine is made up of two inclined planes that meet forming a sharp edge. 29. The rope is attached to a load and can move the load up, down, or sideways with this simple machine. Lever 30. Two simple machines found in a wheelbarrow. wheel and axle #### True/False. If false, change the statement to make it true. T 31. Simple machines are tools that make work easier. - F 32. Simple machines have many compositional one part - F 33. Simple machines require no portry to do work. require energy - **T** 34. Simple machines do work with one movement. - T 35. Simple machines give us an advantage by changing the amount, speed or direction of forces. - F 36. Simple machines require a much greater force to overcome a smaller force. smaller force to overcome - F 37. The amount of effort saved when using a simple machine is called the simple equilibrification equation. mechanical advantage - F38. Reducing friction increases the increases the increases the increase advantage of a machine. friction doesn't affect IMA - F 39. When a machine is used to do work, the force applied by the machine is called the effort force. resistance - F 40. A device made up of more than one simple machine is called a complex machine. compound machine # Multiple Choice. | | b | | | Ċ | | | | | | | | | |--------------|---|----------------------------------|--|---------------------------------|---------------------------------|---------------------|--------------------|------------------|-------|------------------------------|----------------------------|--------------------| | D 41. | | diagram
Inclined | above is
Plane | an exan
B) Pull | - | a(n)
C) Scre | w | D) Lever | | | | | | D 42. | Which of the following statement is true for the diagram above? A) b is the fulcrum, c is the resistance, a is the effort B) b is the resistance, c is the fulcrum, a is the effort C) b is the fulcrum, a is the effort, c is the resistance D) b is the resistance, a is the fulcrum, c is the effort | | | | | | | | | | | | | B 43. | No | | the distar | ice value | es given | | tion 44 | !. | | at c have
D) 400 g | to be to lif | t block b ? | | C 44. | the | _ | m above,
echanical
B) 80 | | | ne systei | | ocm, and t | he di | stance fr | om a to c is | s 80 cm, | | A 45. | If the mechanical advantage of a simple machine is 4, then the A) output force is 4 times the effort B) effort is 4 times the output force C) efficiency is 4% D) the work output is 4 times the input | | | | | | | | | | | | | B 46. | | nple mad
pulley | chine that
B) wed | | ally a kin
C) geai | | lined p
D) leve | | | | | | | C 47. | | stem is | em has 3
B) 2 | sections | s of rope
C) 3 | | ft the lo | ad. The m | necha | inical adv | antage of | the | | A 48. | A)
B)
C) | always I
is equal
is alway | y of a sim
less than
to 100%
vs 50%
vs more th | 100% | | | | | | | | | | B 49. | | easing the | he slant o
ce | | | ne incre
Advanta | | s
C) power | | D) work | output | | | C 50. | A)
B) :
C) | pushing
a person
a persor | of work b
against a
pushing
pushing
carrying | stationa
against
a lawn r | ary wall
a closed
nower a | nd cuttir | ng gras | ains close
ss | ed | | | | ## Which class of lever best describes each of the following devices? 3rd 51. hockey stick 2nd 56. bottle cap opener 2nd 52. nutcracker 3rd 57, baseball bat 2nd 53. wheelbarrow X58. winding mountain road 1st 54, scissors 3rd 59. fishing pole 1st 55. screwdriver prying off a paint lid 1st 60. hammer head removing a nail ## Below are three devices, each a different class lever. First, identify the class of each lever. Then label (fill in the box) the fulcrum, resistance and effort by using the letters F, R, and E. 64. A crow bar (lever) is often used to lift a large object. If the crowbar is 100 cm long and the object is 20 cm from the fulcrum, what is the mechanical advantage of the crowbar? $IMA = D_e/D_r$ IMA = 80 cm/20 cm IMA = 4 65. The wheel of a small dirt bike has a radius of 30 cm. The axle has a radius of 20 cm. What is the mechanical advantage of the wheel and axle? $IMA = R_{u}/R_{a}$ IMA = 30 cm/20 cm IMA = 1.5 66. You are using a ramp to move a heavy box into a moving truck. If the mechanical advantage of the ramp is 2 and the ramp is 2.5 meters long, how high is the slope of the ramp? IMA = D_e/D_r 2 = 2.5 meters/ D_r $D_r = 1.25$ meters 67. The mechanical advantage of a steering wheel is 15. If the radius of the steering column (axle) is 5 cm, what is the radius of the steering wheel? $IMA = R_{u}/R_{a}$ $15 = R_{w}/5 \text{ cm}$ $R_{\rm w} = 75$ cm - 68. You need to lift a barrel that weighs 200 N up 6 meters in height. Instead of lifting it straight up, you decide to roll the barrel up a ramp 12 meters long. - A) Calculate Mechanical Advantage. $$IMA = D_e/D_r$$ $IMA = 12 \text{ meters}/6 \text{ meters}$ $IMA = 2$ B) Is the Mechanical Advantage you calculated ideal or actual? Ideal C) If it takes 125 N of force to roll the barrel up the 12 meter ramp, what is the efficiency of the ramp? $$W_o = (F_r)(D_r)$$ $W_o = (200 \text{ N})(6 \text{ meters}) = 1200 \text{ J}$ Efficiency = $(W_o / W_i) \times 100$ $$W_i = (F_e)(D_e)$$ $W_i = (125 \text{ N})(12 \text{ meters}) = 1500 \text{ J}$ Efficiency = 80% 69. What is the mechanical advantage of the pulley seen below? Is this ideal MA or actual MA? A fixed pulley has no mechanical advantage. A mechanical advantage of 1 doesn't provide any advantage. Your forces are equal. (If it did have MA, it would be ideal.) 70. If the above pulley system can lift a 50 kg mass with 400N of force, what is the MA? $AMA = F_r/F_e$ AMA = (50 kg)(9.8)/400 N AMA = 1.225 (please note...a fixed pulley should have no MA. your effort force should equal the resistance force)