Neutralization Reactions Mixing Acids \& Bases

Acid/Base Neutralization

- A salt is any compound that can be derived from the neutralization of an acid and a base.
- The word "neutralization" is used because the acid and base properties of $\mathrm{H}+$ and $\mathrm{OH}-$ are destroyed or neutralized.
- In the reaction, $\mathrm{H}+$ and OH - combine to form HOH or $\mathrm{H}_{2} \mathrm{O}$ (water molecules).
- A neutralization reaction is a type of double replacement reaction.

Writing neutralization equations

Example: Write the chemical reaction when lithium hydroxide is mixed with carbonic acid.
Step 1: write out the reactants

$$
\mathrm{E}+\overline{\mathrm{OH}}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow
$$

Step 2: daternine products...(make sure the salt is written with correct subscripts! Refer to Oxidation Chart.)

$$
\mathrm{LiOH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Writing neutralization equations

Example: Complete the neutralization reaction...

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow
$$

Step 1: already completed for you

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow
$$

Step 2. deternhine products...(make sure the salt is written with \&oreect subscripts! Refer to Oxidation Chart.)
$+\mathrm{H}_{2} \mathrm{O}+\mathrm{CaS}_{4}^{\text {Charge of cation equals the }}$ need to add subscripts.

Writing neutralization equations

Step 3: balance the equation $\begin{gathered}\text { Remember balancing equations. } \\ \text { Ch. } 21 \text { (uses coefficients only })\end{gathered}$ $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaSO}_{4}$
calcium hydroxide + sulfuric acid \rightarrow calcium sulfate + water

Writing neutralization equations

Step 2: determine products... (Is the salt written with correct subscripts? Oxidation Chart.)

Step 3: balance the equation ${ }^{\text {Remember balancing equations. }}$ Ch (use coefficients only) $3 \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
iron II hydroxide + phosphoric acid \rightarrow iron II phosphate + water
a) $\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
barium hydroxide + hydrochloric acid \rightarrow barium chloride
b) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
calcium hydroxide + nitric acid \rightarrow calcium nitrate
c) $2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
aluminum hydroxide + sulfuric acid \rightarrow aluminum sulfate
d) $\mathrm{KOH}+\mathrm{HClO}_{2} \rightarrow \mathrm{KClO}_{2}+\mathrm{H}_{2} \mathrm{O}$
potassium hydroxide + chlorous acid \rightarrow potassium chlorite

Writing neutralization equations

Example: Complete the neutralization reaction... iron(II) hydroxide + phosphoric acid
Step 1: write out the reactants ...(make sure the acid and base are written with correct subscripts! Oxidation Chart.)

$$
\begin{aligned}
& \mathrm{Fe}^{2}-\overline{\mathrm{F}_{1}}(\mathrm{H})_{\frac{1}{2}} \mathrm{H}_{3}-\mathrm{F}_{4}^{-3} \rightarrow \\
& \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow
\end{aligned}
$$

Practice

Write balanced chemical equations for these neutralization reactions.

1) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{HCl}$
2) calcium hydroxide + nitric acid
3) $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
4) $\mathrm{KOH}+\mathrm{HClO}_{2}$

Titration

Titration-process of determining the concentration of an acid or a base

Phenolphthalein has two chemical
 forms. In acidic conditions it is colorless. In basic conditions it turns red.

An indicator is added to the solution being titrated. The indicator is a substance that changes color when the reaction is complete. Phenolphthalein, which is a commonly used acid-base indicator, is added to the acid solution in a flask.

Titration Animation
 Titration

Slowly and carefully, the base is added to the acid/phenolphthalein mix. When the mix turns from clear to red, the acid has been neutralized by the base. At that point you know exactly how much of the base solution it took to neutralize the acid.

Applying Science

You have learned that neutralization reactions change acids and bases into salts. Antacids typically contain small amounts of $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}$, or NaHCO_{3}, which are bases. The base in the antacid is meant to neutralize the excess acid in your stomach causing your tummy ache.

1) What compounds are produced from a reactions of HCl and $\mathrm{Mg}(\mathrm{OH})_{2}$?
2) Why is it important to have some acid in your stomach?
3) How could you compare how well antacid products neutralize acid? (Hint: Titrations?!) What procedure could you use?

Natural Indicator

Hydrangeas are natural indicators. When the pH of the soil is acidic, they produce blue blossoms. When the pH of the soil is basic, pink blossoms.

Cabbage is another natural indicator. When acidic, deep red color; when neutral, lavender; when basic, yellowgreen.

Applying Science

You have learned that neutralization reactions change acids and bases into salts. Antacids typically contain small amounts of $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}$, or NaHCO_{3}, which are bases. The base in the antacid is meant to neutralize the excess acid in your stomach causing your tummy ache.

1) What compounds are produced from a reactions of HCl and $\mathrm{Mg}(\mathrm{OH})_{2}$?

2) Why is it important to have some acid in your stomach?
3) How could you compare how well antacid products neutralize acid? (Hint: Titrations?!) What procedure could you use?
