Organic Compounds

- It used to be thought that only living things could synthesize the complicated carbon compounds found in cells
- German chemists in the 1800 's learned how to do this in the lab, showing that "organic" compounds can be created by non-organic means.
- Today, organic compounds are those that contain carbon. (with a few exceptions such as carbon dioxide and diamonds)

Saturated vs. Unsaturated

- Single Bonds -Saturated Hydrocarbons contain only single bonds. (They are saturated with the maximum number of hydrogen atoms.)
- Multiple Bonds -Unsaturated Hydrocarbons contain at least one (or more) double or triple bond.

Organic Nomenclature

- Prefix indicates the number of carbon atoms in the compound

Carbon's Bonding Pattern

- Carbon has 4 electrons in its outer shell. To satisfy the octet rule, it needs to share 4 other electrons. This means that each carbon atom forms 4 bonds.
- The 4 bonds are in the form of a tetrahedron, a triangular pyramid.
- Carbon can form long chains, branched chains and rings.
- Compounds with just carbon and hydrogen are "hydrocarbons": non-polar compounds like fuels, oils and waxes.

$\xrightarrow[\mathrm{H}_{5} C_{-} \mathrm{CH}_{3} \mathrm{CH}_{3}]{ }$

Isomers

Isomers - compounds that have identical chemical formulas but different molecular structures (shapes).

H
Isobutane

Organic Nomenclature

- Base word indicates the type of bond(s)in the compound

-ane	single bond
-ene	double bond
-yne	triple bond

Practice

Draw hexane.

Organic Nomenclature

3-octene
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

- Use a number to indicate where the double or triple bond is located in the compound. (Always use the smallest number possible.)
- Use a hyphen between numbers and words

1-butyne

Organic Nomenclature

- Alkanes - $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ rule
- Alkenes - $\mathrm{C}_{n} \mathrm{H}_{2 n}$ rule
- Alkynes - $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-2}$ rule

Examples:

- butane $\mathrm{C}_{4} \mathrm{H}_{10} \quad$ ethene $\mathrm{C}_{2} \mathrm{H}_{4}$
- octane $\mathrm{C}_{8} \mathrm{H}_{18}$ hexyne $\mathrm{C}_{6} \mathrm{H}_{10}$

Practice

What is the chemical formula for

- methane?
- 2-pentene?
- 3-nonyne?

Draw 1-butene

