Care Land				
Α	sa	lt i	is	an۱

Neutralization Reactions Acid/Base Neutralization

- y compound that can be derived from the neutralization of
- The word "neutralization" is used because the acid and base properties of H+ and OH- are destroyed or
- In the reaction, H+ and OH- combine to form or _____ (____ molecules).
- A neutralization reaction is a type of _____ reaction.

Writing neutralization equations

When acids and bases are mixed, a salt forms

$$\stackrel{+}{\text{NaOH}} + \stackrel{+}{\text{HCI}} \rightarrow$$

and the

____join to form the ____

The and the

Writing neutralization equations

Example: Complete the neutralization reaction...

Step 2: determine products...(make sure the salt is

written with correct _____! Refer to Oxidation Chart.)

join to form

Writing neutralization equations

Example: Write the chemical reaction when lithium hydroxide is mixed with carbonic acid.

Step 1: write out the reactants

LiOH $+ H_2CO_3 \rightarrow$

Step 2: determine products...(make sure the salt is written with correct subscripts! Refer to Oxidation Chart.)

Remember the "_____ method from Chapter 20

Remember balancing

Step 3: balance the equation $LiOH + H_2CO_3 \rightarrow Li_2CO_3 + H_2O$

equations... Chapter 21

Step 3: balance the equation

 $Ca(OH)_2 + H_2SO_4 \rightarrow H_2O + CaSO_4$

 $Ca(OH)_2 + H_2SO_4 \rightarrow$

 $Ca(OH)_2 + H_2SO_4 \rightarrow$

Step 1: already completed for you

Writing neutralization equations

Example: Complete the neutralization reaction... iron(II) hydroxide + phosphoric acid Step 1: write out the reactants ...(make sure the acid and base are written with correct subscripts! Oxidation Chart.)

Step 2: determine products...(Is the salt written with correct subscripts? Oxidation Chart.)

Step 3: balance the equation

Practice

Write balanced chemical equations for these neutralization reactions.

- 1) $Ba(OH)_2 + HCI$
- 2) calcium hydroxide + nitric acid
- 3) $AI(OH)_3 + H_2SO_4$
- 4) KOH + HCIO₂

Titration

Titration-process of determining the
_____ of an acid or a base

Titration Animation

Titration

An ______is added to the solution being titrated. The indicator is a substance that changes color when the reaction is complete. Phenolphthalein, which is a commonly used acid-base indicator, is added to the acid solution in a flask.

Phenolphthalein has two chemical forms. In acidic conditions it is

In <u>basic</u> conditions it turns _____

Titration

Slowly and carefully, the
_____ is added to the
acid/phenolphthalein mix.
When the mix turns from
_____, the
acid has been neutralized by
the base. At that point you
know exactly how much of the
base solution it took to
neutralize the acid.

Natural Indicator

Hydrangeas are natural indicators When the pH of the soil is

they produce blue blossoms.
When the pH of the soil is
______, pink blossoms.

Cabbage is another natural indicator.
When ______, deep red color;
when ______, lavender; when ______, yellow-green.

Applying Science

You have learned that neutralization reactions change acids and bases into salts. Antacids typically contain small amounts of Ca(OH)₂, Al(OH)₃, or NaHCO₃, which are bases. The base in the antacid is meant to neutralize the excess acid in your stomach causing your tummy ache.

1) What compounds are produced from a reactions of HCl and Mg(OH)₂?

2) Why is it important to have some acid in your stomach?

Applying Science

3) How could you compare how well antacid products neutralize acid? (Hint: Titrations?!) What procedure could you use?

