(Ch. 21) Types of Chemical Reactions Many chemical reactions have defining ______ which allow them to be classified as to type. ### **Types** of Chemical Reactions The four types of chemical reactions in this unit that you need to know are: - • - • # **Synthesis** Reactions Two or more substances ______to form The general form is _____ #### Example: - Magnesium + oxygen → _____ - $2Mg + O_2 \rightarrow \underline{\hspace{1cm}}$ #### Synthesis Reactions Example: K + Cl₂ - - Write the ions: Balance the charges: _______ - ____ - Balance the equation: ___K + Cl₂ → _____ More Synthesis Reactions... - SO₂ + H₂O →_____ - BaO + H₂O →_____ # **Decomposition** Reactions substance reacts to form _____substances. • The general form is AX → _____ #### Example: - Water can be decomposed by electrolysis. - 2H₂O → _____ More Decomposition Reactions... #### **Single Replacement** Reactions A ______ion in a compound. • The general form is A + BX → A ______ion in a compound. • The general form is Y + BX → #### Single Replacement Reactions #### Example: . Ni + AgNO₃ → • _____ replaces the metallic ion Ag⁺. Ni + AgNO₃ \Rightarrow ____+ ___ (NO₃)₂ • Balance the equation: $Ni + 2AgNO_3 \rightarrow 2Ag + Ni(NO_3)$, Another Example: • Al + Fe₂O₃ → _____ will replace iron(III). $2AI + Fe_2O_3 \rightarrow 2_{---} + _{---_2}O_3$ #### **Single Replacement Reactions** An active nonmetal can replace a less active nonmetal. - The ______(F₂, Cl₂, Br₂, I₂) reactions are good examples. - _____ is the most active and _____ is the least. - Cl₂ +2 NaI → 2 NaCl + I₂ ### **Double Replacement Reactions** Ions of two compounds _____with each other. • The general form is AX + BY → _____ # **Double Replacement** Reactions - NaOH + CuSO₄ → - The _____and ____switch places. - Na⁺ combines with SO₄²⁻ to form ______ - Cu²⁺ combines with OH⁻ to form _____ ### **Double Replacement** - CuSO₄ + Na₂CO₃ → - Cu²⁺ combines with CO₃²⁻ to form ______. - Na⁺ combines with SO_4^{2-} to form _____. $CuSO_4 + Na_2CO_3 \rightarrow$ ______. - Na₂CO₃ + HCl → - Na⁺ combines with Cl⁻ to form . - H+ combines with CO_3^{2-} to form _____. $Na_2CO_3 + 2HCI \rightarrow$ _____ #### **Practice** Classify each of the following as to type: - H₂ + Cl₂ → 2HCl - Ca + 2H₂O → Ca(OH)₂ + H₂ - 2CO + O₂ → 2CO₂ - 2KCIO₃ → 2KCI + 3O₂ - FeS + 2HCl → FeCl₂ + H₂S Complete the equation and classify: • Zn + HCl → ?