(Ch. 21) Types of Chemical Reactions

 Many chemical reactions have defining ______ which allow them to be classified as to type.

Types of Chemical Reactions

The four types of chemical reactions in this unit that you need to know are:

- •
- •

Synthesis Reactions

Two or more substances ______to form

The general form is _____

Example:

- Magnesium + oxygen → _____
 - $2Mg + O_2 \rightarrow \underline{\hspace{1cm}}$

Synthesis Reactions Example:

K + Cl₂ -

- Write the ions: Balance the charges: _______
- ____
- Balance the equation: ___K + Cl₂ → _____

More Synthesis Reactions...

- SO₂ + H₂O →_____
- BaO + H₂O →_____

Decomposition Reactions

substance reacts to form _____substances.

• The general form is AX → _____

Example:

- Water can be decomposed by electrolysis.
- 2H₂O → _____

More Decomposition Reactions...

Single Replacement Reactions

A ______ion in a compound.

• The general form is A + BX →

A ______ion in a compound.

• The general form is Y + BX →

Single Replacement Reactions

Example:

. Ni + AgNO₃ →

• _____ replaces the metallic ion Ag⁺.

Ni + AgNO₃ \Rightarrow ____+ ___ (NO₃)₂

• Balance the equation:

 $Ni + 2AgNO_3 \rightarrow 2Ag + Ni(NO_3)$,

Another Example:

• Al + Fe₂O₃ →

_____ will replace iron(III).

 $2AI + Fe_2O_3 \rightarrow 2_{---} + _{---_2}O_3$

Single Replacement Reactions

An active nonmetal can replace a less active nonmetal.

- The ______(F₂, Cl₂, Br₂, I₂) reactions are good examples.
- _____ is the most active and _____ is the least.
 - Cl₂ +2 NaI → 2 NaCl + I₂

Double Replacement Reactions

Ions of two compounds _____with each other.

• The general form is AX + BY → _____

Double Replacement Reactions

- NaOH + CuSO₄ →
- The _____and ____switch places.
- Na⁺ combines with SO₄²⁻ to form ______
- Cu²⁺ combines with OH⁻ to form _____

Double Replacement

- CuSO₄ + Na₂CO₃ →
- Cu²⁺ combines with CO₃²⁻ to form ______.
- Na⁺ combines with SO_4^{2-} to form _____. $CuSO_4 + Na_2CO_3 \rightarrow$ ______.
- Na₂CO₃ + HCl →
- Na⁺ combines with Cl⁻ to form .
- H+ combines with CO_3^{2-} to form _____. $Na_2CO_3 + 2HCI \rightarrow$ _____

Practice

Classify each of the following as to type:

- H₂ + Cl₂ → 2HCl
- Ca + 2H₂O → Ca(OH)₂ + H₂
- 2CO + O₂ → 2CO₂
- 2KCIO₃ → 2KCI + 3O₂
- FeS + 2HCl → FeCl₂ + H₂S

Complete the equation and classify:

• Zn + HCl → ?