Chemical Reactions \& Energy

Chapter 21, Section 4

Energy OUT

- Exergonic reactions-

$$
\begin{aligned}
& \text { - Exothermic reactions-reactions } \\
& \text { that give off } \\
& \text { (temperature } \\
& \text { because it is } \\
& \text { to its surroundings) } \\
& \text { - Sometimes the reaction proceeds so slow that it's } \\
& \text { difficult to detect any }
\end{aligned}
$$

Energy IN

- Endergonic Reactions-reactions that require energy to be
\qquad in order for it to occur.
-Endothermic Reaction-reactions that (temperature \qquad because it is \qquad from its surroundings)

Energy Exchanges

- All chemical reactions \qquad or
- Energy can take many forms such as
\qquad
\qquad
\qquad
- \qquad are the source of this energy (when chemical reactions take place, bonds are broken)

Energy OUT

-Exothermic reactions provide most of the \qquad used in homes (fossil fuels like \qquad
\qquad react with
oxygen to yield carbon dioxide gas \& ENERGY.)

」

Too SLOW or Too FAST?

- Catalyst-substance added to \qquad -. The catalyst is not changed itself.
- Inhibitors-substance that \qquad a chemical reaction.
-

\qquad can
also affect the rate of reaction.

Quick Check

- Photosynthesis is a chemical reaction that requires energy to proceed. Is it endergonic or exergonic?
- You are developing a product that warms people's hands. Would you choose to use an exothermic or endothermic?
- Your dad is grilling hamburgers. Is burning the propane an exothermic or endothermic reaction?

