

Writing Ionic Compound Formulas Binary & Polyatomic

Writing Ionic Compound Formulas

Follow these general rules when writing formulas for binary ionic compounds.

- 1. Write the symbols for the cation and anion in that order. This means listing the ion oxidation number first.
- 2. Above each symbol, write the _____number of that ion.
- 3. Check to see if charges are balanced. Does the ____= ____=
- 4. If they are balanced, you are done.

		_		. –	
Writing	Innic	(nm)	nound	Formul	lac
VVIILIIIS	IUIIIC	COIII	DOULIG	i oi iii u	เนว

Follow these general rules when writing formulas for binary ionic compounds.

- 5. If not, determine how many atoms of each you need so that the positive charges equal the negative charges.
- 6. Apply as necessary using the "criss-cross method".
- 7. Other General rules:
 - a. Never use '1' as a subscript
 - b. Use the smallest possible subscripts numbers – _____ if necessary

Binary Compound

First example:1. Write the symbols for the cation and anion in that order. This means listing the ion with a positive oxidation number first.

potassium chloride

- 2. Above each symbol, write the oxidation number of that ion.
- 3. Check to see if charges are balanced. Does the positive = negative?
- 4. If they are balanced, you are done.

Binary Compound

Second example:

1. Write the symbols for the cation and anion in that order. This means listing the ion with a positive oxidation number first.

Calcium Sulfide

- 2. Above each symbol, write the oxidation number of that ion.
- 3. Check to see if charges are balanced. Does the positive = negative?
- 4. If they are balanced, you are done.

Binary Compound

Third example:

1. Write the symbols for the cation and anion in that order. This means listing the ion with a positive oxidation number first.

Magnesium Fluoride

- 2. Above each symbol, write the oxidation number of that ion.
- 3. Check to see if charges are balanced. Does the positive = negative?

In order for magnesium fluoride to exist as a compound, there needs __ atoms for every __

Binary Compound

Practice

Sodium Iodide Barium Oxide

Lithium Nitride Aluminum Sulfide

Writing Ionic Compound Formulas

Follow the same general rules when writing formulas for polyatomic compounds. as you used for binary ionic compounds.

HOWEVER

When applying subscripts to balance, you must use

_____ to keep the polyatomic ion together.

sulfate ion

Polyatomic Compound

First example

1. Write the symbols for the cation and anion in that order.

This means listing the ion with a positive oxidation number first.

calcium carbonate

- 2. Above each symbol, write the oxidation number of that ion.
- 3. Check to see if charges are balanced. Does the positive = negative?
- 4. If they are balanced, you are done.

Polyatomic Compound

Second example:

Write the symbols for the cation and anion in that order.
 This means listing the ion with a positive oxidation number first.

magnesium nitrate

- 2. Above each symbol, write the oxidation number of that ion.
- 3. Check to see if charges are balanced. Does the positive = negative?

Polyatomic Compound

Practice

Potassium Chromate Barium Cyanide

Aluminum Hydroxide Sodium Peroxide

Writing Ionic Compound Formulas

Another useful general rule.

Some transition elements have more than one oxidation number.

A ______ is used to distinguish between them.

For example: Fe II has an oxidation number of

Fe III has an oxidation number of _____

The Roman Numeral tells you the _____

Practice

Lead IV Oxide Copper II Bromide Iron III Sulfate