Kinetic Theory

- The theory states that the tiny particles in are in
- This theory is used to explain the behaviors common among gases

Charles' Law

Increases in the temperature of a gas will cause the

Temperature Volume

Charles' Law Example

A gas has a volume of 3.0 L at 400 K . What is its volume at 500 K ?
Identify the variables that you know...
(Temp needs to be in Kelvin)

$$
\begin{aligned}
& \mathbf{T}_{1}= \\
& \mathbf{T}_{2}= \\
& \mathbf{V}_{1}= \\
& \mathbf{V}_{2}=
\end{aligned}
$$

Substitute the values in for the variables...

$$
\mathrm{V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1}
$$

Solve for the unknown variable...

The \qquad of a given amount of dry ideal gas is \qquad to the $\overline{\text { provided when the amount of gas and }}$ the pressure remain fixed.

Charles' Mathematical Law

or

$$
\mathrm{V}_{1} \mathrm{~T}_{2}=
$$

Charles' Law Practice

A gas sample at 313 K occupies a volume of 2.32 L . If the temperature is raised to 348 K , what will the volume be, assuming the pressure remains constant?
Identify the variables that you know...

Substitute the values in for the variables...

[^0]

Boyle's Mathematical Law

or

Boyle's Law Example

A gas has a volume of 3.0 L at 2 atm . What is its
volume at 4 atm?
Identify the variables that you know...
$P_{1}=$
$\mathrm{V}_{1}=$
$\mathrm{P}_{2}=$
$V_{2}=$
Substitute the values in for the variables..

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Solve for the unknown variable...

Combined Gas Law

Substitute the values in for the variables...

Solve for the unknown variable...

[^0]: Solve for the unknown variable...

